パンナの学生生活

地方大学の大学生/プログラミング言語【python】を中心に紹介しています。/日々の脳内をアウトプット/麻雀とワインと日本酒が好き/将来は幸せになりたい

ooencv3の特徴量マッチングも紹介

皆さんopencv3は知っていますか。opencv3は画像処理や特徴量マッチングや顔認証などのライブラリーがたくさん入っているものです。

Opencv3とは

先ほども紹介したopencvは様々なアプリにも使われており、こちらからインストールするとpythonc++などでも使うことが可能です。また、opencvのインストールしたディレクトリにはサンプルが入っており、お試しに使用することが出来ます。

OpenCV

今日はその中の画像の特徴点抽出を紹介していきます。

f:id:panNakotta:20191126150648p:plain

特徴点抽出

こんな感じで二つの画像を比較して、特徴を抽出しています。また、この動画を比較して特徴点を抽出するpythonファイルもサンプルの中に存在しています。

これもアプリなどで使うこともできます。

サンプルコード

#!/usr/bin/env python ''' Affine invariant feature-based image matching sample. This sample is similar to find_obj.py, but uses the affine transformation space sampling technique, called ASIFT [1]. While the original implementation is based on SIFT, you can try to use SURF or ORB detectors instead. Homography RANSAC is used to reject outliers. Threading is used for faster affine sampling. [1] http://www.ipol.im/pub/algo/my_affine_sift/ USAGE asift.py [--feature=<sift|surf|orb|brisk>[-flann]] [ <image1> <image2> ] --feature - Feature to use. Can be sift, surf, orb or brisk. Append '-flann' to feature name to use Flann-based matcher instead bruteforce. Press left mouse button on a feature point to see its matching point. ''' # Python 2/3 compatibility from __future__ import print_function import numpy as np import cv2 as cv # built-in modules import itertools as it from multiprocessing.pool import ThreadPool # local modules from common import Timer from find_obj import init_feature, filter_matches, explore_match def affine_skew(tilt, phi, img, mask=None): ''' affine_skew(tilt, phi, img, mask=None) -> skew_img, skew_mask, Ai Ai - is an affine transform matrix from skew_img to img ''' h, w = img.shape[:2] if mask is None: mask = np.zeros*1 A = np.hstack([A, [[-x], [-y]]]) img = cv.warpAffine(img, A, (w, h), flags=cv.INTER_LINEAR, borderMode=cv.BORDER_REPLICATE) if tilt != 1.0: s = 0.8*np.sqrt(tilt*tilt-1) img = cv.GaussianBlur(img, (0, 0), sigmaX=s, sigmaY=0.01) img = cv.resize(img, (0, 0), fx=1.0/tilt, fy=1.0, interpolation=cv.INTER_NEAREST) A[0] /= tilt if phi != 0.0 or tilt != 1.0: h, w = img.shape[:2] mask = cv.warpAffine(mask, A, (w, h), flags=cv.INTER_NEAREST) Ai = cv.invertAffineTransform(A) return img, mask, Ai def affine_detect(detector, img, mask=None, pool=None): ''' affine_detect(detector, img, mask=None, pool=None) -> keypoints, descrs Apply a set of affine transformations to the image, detect keypoints and reproject them into initial image coordinates. See http://www.ipol.im/pub/algo/my_affine_sift/ for the details. ThreadPool object may be passed to speedup the computation. ''' params = [(1.0, 0.0)] for t in 2**(0.5*np.arange(1,6)): for phi in np.arange(0, 180, 72.0 / t): params.append*2 def f(p): t, phi = p timg, tmask, Ai = affine_skew(t, phi, img) keypoints, descrs = detector.detectAndCompute(timg, tmask) for kp in keypoints: x, y = kp.pt kp.pt = tuple( np.dot(Ai, (x, y, 1)) ) if descrs is None: descrs = return keypoints, descrs keypoints, descrs = , [] if pool is None: ires = it.imap(f, params) else: ires = pool.imap(f, params) for i, (k, d) in enumerate(ires): print('affine sampling: %d / %d\r' % (i+1, len(params)), end='') keypoints.extend(k) descrs.extend(d) print() return keypoints, np.array(descrs) if __name__ == '__main__': print(__doc__) import sys, getopt opts, args = getopt.getopt(sys.argv[1:], '', ['feature=']) opts = dict(opts) feature_name = opts.get('--feature', 'brisk-flann') try: fn1, fn2 = args except: fn1 = 'aero1.jpg' fn2 = 'aero3.jpg' img1 = cv.imread(cv.samples.findFile(fn1), cv.IMREAD_GRAYSCALE) img2 = cv.imread(cv.samples.findFile(fn2), cv.IMREAD_GRAYSCALE) detector, matcher = init_feature(feature_name) if img1 is None: print('Failed to load fn1:', fn1) sys.exit(1) if img2 is None: print('Failed to load fn2:', fn2) sys.exit(1) if detector is None: print('unknown feature:', feature_name) sys.exit(1) print('using', feature_name) pool=ThreadPool(processes = cv.getNumberOfCPUs()) kp1, desc1 = affine_detect(detector, img1, pool=pool) kp2, desc2 = affine_detect(detector, img2, pool=pool) print('img1 - %d features, img2 - %d features' % (len(kp1), len(kp2))) def match_and_draw(win): with Timer('matching'): raw_matches = matcher.knnMatch(desc1, trainDescriptors = desc2, k = 2) #2 p1, p2, kp_pairs = filter_matches(kp1, kp2, raw_matches) if len(p1) >= 4: H, status = cv.findHomography(p1, p2, cv.RANSAC, 5.0) print('%d / %d inliers/matched' % (np.sum(status), len(status))) # do not draw outliers (there will be a lot of them) kp_pairs = [kpp for kpp, flag in zip(kp_pairs, status) if flag] else: H, status = None, None print('%d matches found, not enough for homography estimation' % len(p1)) explore_match(win, img1, img2, kp_pairs, None, H) match_and_draw('affine find_obj') cv.waitKey() cv.destroyAllWindows()

このようなコードになっています。

しかしこのコードもしっかりと関数化されて書かれていて、再利用可能なサンプルコードになっているので画像を変えても使えます。

私も昔、サンプルコードを使って別の画像で比較してみたこともあります。

 

pannakotta.hatenablog.jp

 

また、Opencvでは画像のモザイク処理や色を反転させることや、ぼかし等もできます。

なので他のサンプルコードを使うことで

機械学習のtrain画像のかさ増しもopencvを使ってすることが出来ます。

*1:h, w), np.uint8) mask[:] = 255 A = np.float32([[1, 0, 0], [0, 1, 0]]) if phi != 0.0: phi = np.deg2rad(phi) s, c = np.sin(phi), np.cos(phi) A = np.float32([[c,-s], [ s, c]]) corners = [[0, 0], [w, 0], [w, h], [0, h]] tcorners = np.int32( np.dot(corners, A.T) ) x, y, w, h = cv.boundingRect(tcorners.reshape(1,-1,2

*2:t, phi